2002 Annual Drinking Water Quality Report Village of Oostburg #### **Our Mission** The Oostburg Municipal Water Department strives to provide safe and sufficient water to enhance and sustain our vibrant community. Our goal is to furnish you with the best possible water at the lowest possible price. We continually surpass all state and federal health and safety standards while providing water at a cost of less than a quarter of a penny per gallon. ## The 2002 Water Quality Report As a service to our customers, we are pleased to provide you with this annual water quality report for 2002. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually protect our water resources. We are committed to ensuring the quality of your water. #### **Source of Water Supply** The water we use in the village is drawn from the Niagaran Dolomite Aquifer. This aquifer is overlain by 130 to 165 feet of glacial drift. We currently have two wells in the village that pump water from this aquifer into our system. Well #1 that is located at 524 N. 9th Street is 275 feet deep and can pump 400 gallons a minute into the system. Well #2 located at 437 Center Ave., is 360 feet deep and can pump 430 gallons a minute. Both wells are computer controlled, and have the ability to be run by a portable generator in an emergency. A third well has been dug and is currently having the pumping equipment and well house constructed. This well is located in the business park and should come on line late in 2003. #### **Water Storage Capacity** The water that is pumped from the wells is stored in the system mains and two reservoirs. In 2002 the village was serviced by 84,170 feet of water main with 958 water services connected to it. Pressure for the system is supplied by two reservoirs. The main reservoir is an elevated steel storage tank of 250,000-gallon capacity. It provides pressure to the system through the gravitational pull on the water stored 143 feet high. The second reservoir is a concrete reservoir at well #1 with a capacity of 60,000 gallons. It is stored mostly below ground level and provides pressure to the system by pumping the water into the mains at 420 gallons per minute as needed. These systems are all computer controlled. ### **Water Monitoring and Testing** Oostburg Municipal Water Department routinely monitors for constituents in your drinking water according to Federal and State laws. The water analysis table shows the results of our monitoring for 2002. This testing gave us an overall picture of the quality of our water for the year. Bi-monthly tests are performed throughout the distribution system to look for indicator organisms called coliform bacteria. If these bacteria are detected, there may be a potential for harmful organisms also to be present. Last year we collected 24 samples to monitor for this condition. There have been no unsafe samples results since 1990. This is a very good record. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some constituents. The presence of constituents does not necessarily indicate that the water poses a health risk. More information about constituents and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. #### **Taste and Odor** Our water supply, coming from an aquifer deep in the ground, is rich in solids consisting mostly of minerals. These minerals dissolve over time and become part of the water supply. This can result in occasional water complaints, but are not harmful for consumption or health. At times our water customers have reported "brown" or "rust colored" water. This is due to the high iron content of our water supply, resulting in iron particles settling on the surfaces of the water mains and household water pipes. This condition is most noticeable when there is rapid water movement through the mains such as when there is a water main break, which stirs these particles and suspends it in the water supply until it can settle again. While this occurrence may be unpleasant, it is not harmful for consumption. In 2000, the Village of Oostburg began adding silicates to the water supply in an effort to control the rust color in the water. This may take several years to take effect. Occasionally we get reports on a "sulfur smell" or "rotten egg smell" in the water. This can be caused by the sulfate content of our water. This is often most noticeable on hot water from the water heater. Routine flushing of the water heater can help reduce this problem. Currently the Village of Oostburg is adding Chlorine to the water supply in an attempt to improve this problem. The Village of Oostburg currently has numerous dead ends in the water distribution system. These dead ends do not get the system wide water flow that "looped" mains get; therefore higher levels of these solids have a chance to settle in the mains. To help with this problem, waterworks personnel flush all hydrants (to stir up and wash out settled solids), including dead ends, twice per year. #### **Definitions** In the following water analysis table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: > - Greater Than Symbol < - Less Than Symbol **Non-Detects (ND)** - laboratory analysis indicates that the constituent is not present. <u>Parts per million (ppm) or Milligrams per liter (mg/l)</u> - one part per million corresponds to one minute in two years or a single penny in \$10,000. <u>Parts per billion (ppb) or Micrograms per liter (ug/l)</u>)- one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. <u>Parts per trillion (ppt) or Nanograms per liter (nanograms/l)</u> - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000. <u>Parts per quadrillion (ppq) or Picograms per liter (picograms/l)</u> - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000. <u>Picocuries per liter (pCi/L)</u> - picocuries per liter is a measure of the radioactivity in water. Millirems per year (mrem/yr) - measure of radiation absorbed by the body. <u>Million Fibers per Liter (MFL)</u> - million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers. <u>Nephelometric Turbidity Unit (NTU)</u> - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. <u>Action Level (AL)</u> - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. <u>Maximum Contaminant Level (MCL)</u>- The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. <u>Maximum Contaminant Level Goal (MCGL)</u> - The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | | | | | TEST RE | | |----------------------------------|------------------|----------------|------------------|--------|--|--| | Contaminant | Violation
Y/N | Level Detected | Unit Measurement | MCLG | MCL | Likely Source of Contamination | | licrobiological (| Contami | nants | | | | | | Total Coliform Bacteria | N | 1 | | 0 | presence of
coliform
bacteria in 5%
of monthly
samples | Naturally present in the environment | | Fecal coliform and <i>E.coli</i> | N | 0 | | 0 | a routine
sample and
repeat sample
are total
coliform
positive, and
one is also fecal
coliform or <i>E.</i>
<i>coli</i> positive | Human and animal fecal waste | | Turbidity | N | 0 | | n/a | TT | Soil runoff | | Radioactive Con | taminant | S | | | | | | Gross Beta emitters | N | 3.2 | PCi/l | 0 | 50 | Decay of natural and man-made deposit | | Gross Alpha emitters | N | 3.6 | pCi/1 | 0 | 15 | Erosion of natural deposits | | Combined radium | N | 0 | pCi/1 | 0 | 5 | Erosion of natural deposits | | norganic Conta | minants | | | | | | | Alkalinity CaCO ₃ | N | 94 | mg/l | N/A | N/A | Erosion of natural deposits | | Aluminum | N | 0.016 | mg/l | 0.05 | 0.05 | Erosion of natural deposits | | Antimony | N | < 0.003 | mg/l | .006 | .006 | Discharge from petroleum refineries; fir retardants; ceramics; electronics; solder | | Arsenic | N | 1 | ppb | n/a | 50 | Erosion of natural deposits; runoff from orchards; runoff from glass and electronic production wastes | | Asbestos | N | Waived | FIB/L | 7 MILL | 7 MILL | Decay of asbestos cement water mains;
erosion of natural deposits | | Barium | N | .013 | ppm | 2 | 2 | Discharge of drilling wastes; discharge
from metal refineries; erosion of natural
deposits | | Beryllium | N | <.00034 | mg/l | 0.004 | 0.004 | Discharge from metal refineries and coa
burning factories; discharge from
electrical, aerospace, and defense
industries | | Cadmium | N | <.0001 | mg/l | 0.005 | 0.005 | Corrosion of galvanized pipes; erosion of
natural deposits; discharge from metal
refineries; runoff from waste batteries and
paints | |---------------------------------------|---|----------|------|-------|--------|--| | Calcium | N | 117 | mg/l | N/A | N/A | Erosion of natural deposits | | Chromium | N | 2 | ppb | 100 | 100 | Discharge from steel and pulp mills;
erosion of natural deposits | | Copper | N | .092 | ppm | 1.3 | AL=1.3 | Corrosion of household plumbing systems;
erosion of natural deposits; leaching from
wood preservatives | | Cyanide | N | Waived | mg/l | 0.2 | 0.2 | Discharge from steel/metal factories;
discharge from plastic and fertilizer
factories | | Fluoride | N | .4 | ppm | 4 | 4 | Erosion of natural deposits; water additive
which promotes strong teeth; discharge
from fertilizer and aluminum factories | | Hardness Total CaCO ₃ | N | 467 | mg/l | 500 | 500 | Erosion of natural deposits | | Iron | N | 0.16 | mg/l | 0.3 | 0.3 | Erosion of natural deposits | | Lead | N | 6.8 | ppb | 0 | AL=15 | Corrosion of household plumbing systems, erosion of natural deposits | | Magnesium | N | 43 | mg/l | | | Erosion of natural deposits | | Manganese | N | 0.007 | mg/l | 0.05 | 0.05 | Erosion of natural deposits | | Mercury (inorganic) | N | <.00015 | mg/l | 0.002 | 0.002 | Erosion of natural deposits; discharge from
refineries and factories; runoff from
landfills; runoff from cropland | | Nickel | N | <.0097 | mg/l | 0.1 | 0.1 | Erosion of natural deposits | | Nitrate NO ₃ (as Nitrogen) | N | .03 | ppm | 10 | 10 | Runoff from fertilizer use; leaching from
septic tanks, sewage; erosion of natural
deposits | | Nitrite NO ₂ (as Nitrogen) | N | <0.0024 | mg/l | 1 | 1 | Runoff from fertilizer use; leaching from
septic tanks, sewage; erosion of natural
deposits | | Selenium | N | <0.001 | mg/l | 0.05 | 0.05 | Discharge from petroleum and metal
refineries; erosion of natural deposits;
discharge from mines | | Silver | N | < 0.0005 | mg/l | 0.1 | 0.1 | Erosion of natural deposits | | Sodium | N | 46 | Ppm | n/a | n/a | Erosion of natural deposits | | Sulfate | N | Waived | mg/l | 250 | 250 | Erosion of natural deposits | | Thallium | N | <0.001 | mg/l | 0.002 | 0.002 | Leaching from ore-processing sites;
discharge from electronics, glass, and drug
factories | | Zinc | N | 0.006 | mg/l | 0.002 | 0.002 | Erosion of natural deposits | Synthetic Organic Contaminants including Pesticides and Herbicides | 2,4-D | N | < 0.05 | ug/l | 70 | 70 | Runoff from herbicide used on row crops | |----------------------|---|--------|-------------|----|-----|---| | 2,4,5-TP (Silvex) | N | < 0.05 | ug/l | 50 | 50 | Residue of banned herbicide | | Alachlor | N | <0.1 | ug/l | 0 | 2 | Runoff from herbicide used on row crops | | Atrazine | N | <0.1 | ug/l | 3 | 3 | Runoff from herbicide used on row crops | | Benzo(a)pyrene (PAH) | N | Waived | nanograms/l | 0 | 200 | Leaching from linings of water storage tanks and distribution lines | | Carbofuran | N | < 0.9 | ug/l | 40 | 40 | Leaching of soil fumigant used on rice and alfalfa | | Chlordane | N | < 0.2 | ug/l | 0 | 2 | Residue of banned termiticide | | Dalapon | N | <0.5 | ug/l | 200 | 200 | Runoff from herbicide used on rights of way | |----------------------------------|---|--------|-------------|-----|-----|---| | Di(2-ethylhexyl)adipate | N | <0.6 | ug/l | 400 | 400 | Discharge from chemical factories | | Di(2-ethylhexyl)phthalate | N | <0.6 | ug/l | 0 | 6 | Discharge from rubber and chemical factories | | Dioxin [2,3,7,8-TCDD] | N | Waived | picograms/l | 0 | 30 | Emissions from waste incineration and other combustion; discharge from chemical factories | | Endothall | N | <9.0 | ug/l | 100 | 100 | Runoff from herbicide use | | Endrin | N | < 0.01 | ug/l | 2 | 2 | Residue of banned insecticide | | Ethylene dibromide | N | < 0.05 | ug/l | 0 | 50 | Discharge from petroleum refineries | | Glyphosate | N | <6.0 | ug/l | 700 | 700 | Runoff from herbicide use | | Heptachlor | N | < 0.04 | ug/l | 0 | 0.4 | Residue of banned termiticide | | Heptachlor epoxide | N | < 0.02 | ug/l | 0 | 0.2 | Breakdown of heptachlor | | Hexachlorobenzene | N | <0.1 | ug/l | 0 | 1 | Discharge from metal refineries and agricultural chemical factories | | Hexachlorocyclopentadiene | N | <0.1 | ug/l | 50 | 50 | Discharge from chemical factories | | Lindane | N | < 0.02 | ug/l | 0.2 | 0.2 | Runoff/leaching from insecticide used on cattle, lumber, gardens | | Methoxychlor | N | <0.1 | ug/l | 40 | 40 | Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock | | Oxamyl [Vydate] | N | <1.0 | ug/l | 200 | 200 | Runoff/leaching from insecticide used on apples, potatoes and tomatoes | | PCBs [Polychlorinated biphenyls] | N | <0.5 | ug/l | 0 | 1 | Runoff from landfills; discharge of waste chemicals | | Pentachlorophenol | N | < 0.02 | ug/l | 0 | 1 | Discharge from wood preserving factories | | Picloram | N | < 0.05 | ug/l | 500 | 500 | Herbicide runoff | | Simazine | N | < 0.07 | ug/l | 4 | 4 | Herbicide runoff | | Toxaphene | N | <1.0 | ug/l | 0 | 3 | Runoff/leaching from insecticide used on cotton and cattle | # **Volatile Organic Contaminants** | Benzene | N | < 0.23 | ug/l | 0 | 5 | Discharge from factories; leaching from gas storage tanks and landfills | |-------------------------------|---|--------|------|-----|-----|---| | Carbon tetrachloride | N | <0.24 | ug/l | 0 | 5 | Discharge from chemical plants and other industrial activities | | Chlorobenzene | N | < 0.22 | ug/l | | 100 | Discharge from industrial chemical factories | | o- Dichlorobenzene | N | < 0.32 | ug/l | 600 | 600 | Discharge from industrial chemical factories | | p- Dichlorobenzene | N | <0.29 | ug/l | 75 | 75 | Discharge from industrial chemical factories | | 1,2 - Dichloroethane | N | <0.18 | ug/l | 0 | 5 | Discharge from industrial chemical factories | | 1,1 - Dichloroethylene | N | < 0.25 | ug/l | 7 | 7 | Discharge from industrial chemical factories | | cis-1,2-Dichloroethylene | N | <0.21 | ug/l | 70 | 70 | Discharge from industrial chemical factories | | trans - 1,2 -Dichloroethylene | N | <0.26 | ug/l | 100 | 100 | Discharge from industrial chemical factories | | Dichloromethane | N | < 0.15 | ug/l | 0 | 5 | Discharge from pharmaceutical and chemical factories | | 1,2-Dichloropropane | N | <0.23 | ug/l | 0 | 5 | Discharge from industrial chemical factories | | Ethylbenzene | N | < 0.23 | ug/l | 700 | 700 | Discharge from petroleum refineries | |-------------------------|---|--------|------|-----|-----|--| | Styrene | N | <0.21 | ug/l | 100 | 100 | Discharge from rubber and plastic factories; leaching from landfills | | Tetrachloroethylene | N | < 0.25 | ug/l | 0 | 5 | Leaching from PVC pipes; discharge from factories and dry cleaners | | 1,2,4 -Trichlorobenzene | N | < 0.32 | ug/l | 70 | 70 | Discharge from textile-finishing factories | | 1,1,1 - Trichloroethane | N | <0.24 | ug/l | 200 | 200 | Discharge from metal degreasing sites and other factories | | 1,1,2 -Trichloroethane | N | < 0.23 | ug/l | 3 | 5 | Discharge from industrial chemical factories | | Trichloroethylene | N | < 0.23 | ug/l | 0 | 5 | Discharge from metal degreasing sites and other factories | | Toluene | N | < 0.23 | ppm | 1 | 1 | Discharge from petroleum factories | | Vinyl Chloride | N | < 0.26 | ug/l | 0 | 2 | Leaching from PVC piping; discharge from plastics factories | | Xylenes | N | < 0.44 | ppm | 10 | 10 | Discharge from petroleum factories;
discharge from chemical factories | #### So What Does It Mean? As you can see by the water analysis table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water IS SAFE at these levels. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). All sources of drinking water (including bottled water) are subject to potential contamination by constituents that are naturally occurring or are man made. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. #### **Conclusion** Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding. We at the Village of Oostburg work hard to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. If you have any questions about this report or concerning your water utility, please contact Roger Oonk, Director of Public Works (564-3844) or Kim Simmelink, Clerk/Treasurer (564-3214). We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled board meetings. They are held on the second Monday of every month at the Oostburg Civic Center, 215 North 8th Street, Oostburg, at 7:00PM. # **Related World Wide Web Water Quality Links** Water on Tap: A Consumer's Guide to the Nation's Drinking Water http://www.epa.gov/OGWDW/wot/ontap.html Drinking Water Glossary http://www.epa.gov/OGWDW/glossary.html The Water Quality Information Center National Agricultural Library – U.S. Department of Agriculture http://www.nal.usda.gov/wqic/ Wisconsin Department of Natural Resources http://www.dnr.state.wi.us/